
Lehrstuhl Informatik 7 (Prof. Dr.-Ing. Reinhard German)
Martensstraße 3, 91058 Erlangen

Introduction to
Data Structures and Algorithms

Chapter: Hash Tables

Data Structures and Algorithms (27)

 Abstract data type Table (ADT) with table entries
 Each table entry contains a unique key K
 A table entry may contain some information I (satellite data)
 => a table entry is an ordered pair(K,I)

 An example is a compiler that needs to maintain a
symbol table T
 The keys of T are character strings which correspond to

identifiers of programming language
 The information I of each table entry (symbol table) are the

attributes of the compiler parsing process

Hash Tables

Data Structures and Algorithms (28)

 Expl 1: C program parsing

// Declare an external function
extern double bar (double) x);

// Define a public function
double foo (int count)
{

double sum = 0.0 ;
// Sum all the values bar(1) to bar(count)
for (int i = 1; i <= count; i++)

sum += bar((double) i) ;
return sum;

}

Hash Tables

Symbol
name

Type Scope

bar function,
double

extern

x double funct parameter

foo function,
double

global

count Int funct parameter

sum double block local

i int loop statement

Key K Information I

Hash table T(K,I)

Data Structures and Algorithms (29)

 Expl 2: Airport Codes and Names

Hash Tables

Key
K = Airport Code

Associated Information
I = City

AKL Auckland, New Zealand
DCA Washington, D.C.
FRA Frankfurt, Germany
GCM Grand Cayman, Cayman Islands
GLA Glasgow, Scotland
HKG Hong Kong, China
LAX Los Angeles, California
ORY Paris, France
PHL Philadelphia, Pennsylvania

Data Structures and Algorithms (30)

 Characteristics of an abstract data type Table (ADT)

 The ADT contains character strings of variable length
 An ADT supports typical “Dictionary Operations” as

- Searching for a table entry (K, I) at given key K
- Deleting an entry of ADT with given information I
- Inserting an entry into ADT with special information I

 The strings are considered as keys for an entry
 The “Dictionary Operations” should be very efficient,

preferably independent of the length of the table

 Such abstract data type is a generalization of an (associative)
array and is called a Hash Table

Hash Tables

Hash Tables

Mapping Data to a Hash Table T: Direkt adressing

 Effective access to Hash Table T

 The set of possible key values is called the universe U of keys

 Be the set of actual keys, which have to be mapped to T

 If K is small relative to the number of U then we can use
T simple as a direct-address table T[0,…,m-1]

 Each position (slot) of the array T corresponds to a key k in the
universe U : T[k] corresponds to key k

UK ⊆

)(UK <

Data Structures and Algorithms (32)

Mapping Data to a Hash Table T: Direkt adressing

 The dictionary operations Search, Insert and Delete are
trivial to implement

 The runtime for each of these operations is constant O(1)

Hash Tables

Direct-Address-Search(T,k)
return T[k]

Direct-Address-Insert(T,x)
T[key[x]]:= x

Direct-Address-Delete(T,x)
T[key[x]]:=NIL

Data Structures and Algorithms (33)

Mapping Data to a Hash Table T: Direkt addressing

 The set K = {2,3,5,8} of actual keys determines the slots in table T that
one can consider as pointers to elements (K,I) of the dynamic set T

Hash Tables

Key 2 info

Key 3 info

Key 5 info

Key 8

0

1
2
3
4
5
6
7
8
9

U
(Universe of keys)

0* 6*
9* 7*

4*
1*

K 2*
(actual 3*
keys) 5*

8*

T

Data Structures and Algorithms (34)

Mapping Data to a Hash Table T: Direkt addressing

 The other slots, here blue-shaded, contain pointer NIL

Hash Tables

Key 2 info

Key 3 info

Key 5 info

Key 8

0

1
2
3
4
5
6
7
8
9

U
(Universe of keys)

0* 6*
9* 7*

4*
1*

K 2*
(actual 3*
keys) 5*

8*

T

Data Structures and Algorithms (35)

Difficulty of direct addressing

 If universe U is very large, storing table T of size IUI is impractical
or impossible

 If set of keys actually stored K<<U - most of space for T is wasted
 Hash table requires much less storage than direct-address table, i.e.
 The storage requirement can be reduced to while searching for

an element takes time O(1) in the average
 Approach for Non-direct-addressing: Hash function h
 h maps the universe U of keys into slots of hash table T[0,…,m-1]:

 Hashing: the element with key k is stored in slot h(k) or h(k) is the
hash value of key k

 Basic idea: reduction of IUI indices of T to only m distinct values

Hashing

)(KΘ

}1,,1,0{: −→ mUh

Data Structures and Algorithms (36)

Using a hash function h

 h maps keys to hash-table slots
 Here: k2 and k5 map to the same slot - h(k2) = h(k5) Collision

Hashing

U
(Universe of keys)

k1*
K k4*

actual k5*
keys) k2*

k3*

T

)5()2(khkh =

0

)1(kh

)4(kh

)3(kh

1−m

Data Structures and Algorithms (37)

 Collision: Two keys may hash to the same slot of T, i.e.

 Reason: very often there are many more distinct keys k than table
addresses: IKI > m of hash table T[0,…,m-1]:

 Necessary: collision resolution policies

 Of course: best approach would be to avoid collision altogether
(so-called ‘perfect hashing’)
 Goal to minimize the number of collisions
 Try to find well-designed hash functions
 A ‘good’ hash function will map the keys uniformly and randomly onto

the full range of possible locations in table T

Hashing & collision resolution

Nkkkhkh jiji ∈≠= ji, and ,for)()(

Data Structures and Algorithms (38)

Hash functions & collision resolution

Example:

 Take letters of Latin alphabet as keys with subscripts such as
where the subscript marks

 the letter’s position in alphabetical order, e.g.
for letter “S” as the letter in the Latin alphabet

 tabel T contains space for only 7 entries, numbered from 0 to 6

 in the table are inserted they keys (for simplicity
we are ignoring the associated info/satellite data)

 Which locations of T are used for storing ?
 Answer: Hash function by “Division method”

 Hash function: Division method

 Other hash functions are e.g. Multiplication method and Universal hashing

14777

10J

6

5

4

3

2

1
0

19S

2B

2618321 and ,,, ZRCBA

19S

T

th19

19102 and ,, SJB

19102 and ,, SJB

Kkmkkh ∈= for mod)(

Data Structures and Algorithms (39)

Hash functions & collision resolution

Hash function: Division method (Example)

 In the example the locations in T for keys you
compute following:

a) identify the subscripts of the keys with k in the formula h(k)

b) divide k by m = 7 and determine the remainder

 Now lets try inserting the new keys into the
table T; based on the Division method computation we get for

 Because of T[0] is an empty slot no problem !

14777

10J

6

5

4

3

2

1
0

19S

2B

232414 and ,, WXN

3remainder 17:10
,37mod10)10(:by given is for 3Entry 10

=
==hJ

T

19102 and ,, SJB

Kkmkkh ∈= for mod)(

]0[slot means that ,07mod14)14(:14 ThN ==

Data Structures and Algorithms (40)

Hash functions & collision resolution

Hash function: Division method (Example)

 key should be placed into slot
 but position 3 of T already contains key

 Collision resolution policies
 A simple heuristic approach:
 Here for example: Look in table T and find the first empty slot at

lower location w.r.t. collision position and insert the colliding key
 If all lower numbered locations are already filled, “wrap around” and

start searching for empty locations at the highest numbered location,
in (example) location T(6)

Collision 10 →J

Kkmkkh ∈= for mod)(

3)(24 =Xh

14777

10J

6

5

4

3

2

1
0

19S

2B

14N

24X

)()(3 same at the collide and 24101024 XhJhsshash addreJX ==
for Need⇒

T

Data Structures and Algorithms (41)

Hash functions & collision resolution

 The results are given in table T

14777

10J

6

5

4

3

2

1
0

19S

2B

14N

24X
Third probe at empty location 1

Second probe at occupied location 2

)(24Xh first probe at collision address 3

Example:

T

Data Structures and Algorithms (42)

Hash functions & collision resolution

Example:

 Finally is to insert

14777

10J

6

5

4

3

2

1
0

19S

2B

14N

24X
Third probe at occupied location 0

Second probe at occupied location 1
)(23Wh first probe at collision address 2

23W
Fourth probe at empty location 6

22323 key by occupiedalready is 2)h(Location. BWW =

inserted. is W Here
:6slot empty tocome an around wrap weso filled, are 0 and 1 positionsLower

23

 The locations examined for finding an empty slot are the probe sequence
 The probe sequence for is 2,1,0,6,5,4, and 323W

Data Structures and Algorithms (43)

Hash functions & collision resolution

Example:

 The heuristic approach for creating the probe sequence of above Example is a special
application of so-called open addressing

 Open addressing
We successively examine , or probe, the hash table T until we find an empty
slot to put the key

 The probe sequence depends upon the key being inserted
 The hash function is extended to include the probe number as a second input:

 Every hash-table position is eventually considered as a slot for a new key as the
table T fills up

⇒−

−

)1,1,0 of npermutatio

a bemust)1(,),1()0(sequence probe the,key every For

,m

k,mhk,,hk,hk

 }.1,,1,0{}1,,1,0{: −→−× mmUh

Data Structures and Algorithms (44)

Open addressing

 Pseudocode of inserting key k into hash table T
(assumption: key k with no info/satellite data, each slot contains
either a key or NIL for being empty)

Hash functions & collision resolution

HASH-INSERT(T,k)
1 i:=0
2 repeat j:= h(k,i)
3 if T[j]= NIL
4 then T[j]:= k
5 return j
6 else i:= i+1
7 until i = m
8 error ”hash table overflow”

Data Structures and Algorithms (45)

Open addressing

 Pseudocode of searching for key k in hash table T
 The algorithm probes the same sequence of slots as in HASH-INSERT

 Analysis of open addressing
 With assumption of uniform hashing (each key is equally likely to have any of

the m! permutations of (0,1,…,m-1) as its probe sequence)
Average Runtime is O(1)

Hash functions & collision resolution

HASH-SEARCH(T,k)
1 i:=0
2 repeat j:= h(k,i)
3 if T[j]= k
4 then return j
5 i:= i+1
6 until T[j] = NIL or i = m
8 return NIL

) of slots ofnumber -
, in stored elements ofnumber - constant, is 1 (if

Tm
Tnn/m rload facto <=α

Data Structures and Algorithms (46)

Open addressing

 Three techniques to compute the probe sequences
 Linear probing, quadratic probing, and double hashing

 Double hashing produces the most probe sequences, and thus gives the best
results, generally

 Linear probing
 with auxiliary hash function

Hash functions & collision resolution

)1,,1,0 of npermutatio
a is)1,(,),1,(),0,(that guaranteed is Always

−
−

m
mkhkhkh

 }1,,1,0{: −→′ mUh

1,,1,0for mod))((),(−=+′= mimikhikh

sequences probedistinct most at are key for
])([[1][0]

)([])([is probedslot first thekey for
 1- slot until ,, , slots toaround wrapthen

slot then,

mk
khTTT

khTkhTk
⇒′
+′′

1] T[h'(k) + (m-1)],

Data Structures and Algorithms (47)

Open addressing

 Quadratic probing

 Double hashing

Hash functions & collision resolution

1-m,0,1, constants, are 0 and
 function, hashauxiliary an is where, mod)i i)((),(

21

2
21

=≠
′++′=

 i cc
hmcckhikh

1,,1,0
functions, hashauxiliary are and where, mod (k))i (k)(),(2121

−=
+=

mi
hhmhhikh

may vary both,or offset, theposition, probe initial thesince ,key the
 upon ways twoin depends here sequence probe - probing quadraticor linear at Unlike

 modulo (k),amount by positions previous
fromoffset are positions probe successive (k)],[position tois probe initial The

2

1

k

mh
hT

⇒

Data Structures and Algorithms (48)

 Idea: put all keys that collide at a single hash address on a linked list starting at
that address

Hash functions & collision resolution

U
(Universe of keys)

k1*
K k4* k5*

(actual k7*
keys) k2*

k8* k3*
k6*

T

Collision resolution by chaining

8k 6k

5k 2k 7k

3k

1k 4k

Data Structures and Algorithms (49)

Hash functions & collision resolution

U
(Universe of keys)

k1*
K k4* k5*

(actual k7*
keys) k2*

k8* k3*
k6*

T
Collision resolution by chaining

8k 6k

5k 2k 7k

3k

1k 4k

 NIL contains lot otherwises),()()(and)()(here , is
 valueshash whosekeys theall of a contains][slot table-hash Each

72541 jkhkhkhkhkhj
tlinked lisjT

===

Data Structures and Algorithms (50)

Collision resolution by chaining

 The dictionary operations on hash table T are easy to implement

 The worst-case running time
 for insertion is O(1)
 for deletion is O(1) if the lists are doubly linked
 for searching is

Hash functions & collision resolution

CHAINED-HASH-INSERT(T,x)
insert x at the head of list T[h(key[x])]

CHAINED-HASH-SEARCH(T,k)
search for an element with key k in list T[h(k)]

CHAINED-HASH-DELETE(T,x)
delete x from the list T[h(key[x])]

 chaina in stored elements of
number average the- theis e wher),(1 rload factoαα+Θ

	Introduction to�Data Structures and Algorithms
	Hash Tables
	Hash Tables
	Hash Tables
	Hash Tables
	Hash Tables
	Hash Tables
	Hash Tables
	Hash Tables
	Hashing
	Hashing
	Hashing & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution
	Hash functions & collision resolution

